# EII工HMH EФHMEPIAA 

THE KYYIPIAKHE AHMOKPATIAE
ПАРАРТНМА ПРЯТО
NOMOQEEIA - MEPOE I

| A@ı日นós 4374 |  | 2345 |
| :---: | :---: | :---: |



 натос．

Apiधिóc 216（I）tou 2012

## NOMOE ПOY KATAPIEI KAI ANTIKAOILTA TON MEPI इYNTA三IO $\triangle O T I K \Omega N ~ \Omega \Phi E A H M A T \Omega N$ KPATIK $\Omega N$ YПANAHA $\Omega N$ KAI YПIAAAHAON TOY EYPYTEPOY $\triangle H M O \Sigma I O Y ~ T O M E A ~$ ПEPI $\triangle A M B A N O M E N \Omega N ~ K A I ~ T \Omega N ~ A P X \Omega N ~ T O П I K H \Sigma ~$ AYTOAIOIKHइH亡（ $\triangle I A T A \equiv E I \Sigma ~ Г E N I K H \Sigma ~ E Ф A P M O T H \Sigma) ~ N O M O ~$



Epunveía．

1．O тарúv Nó $\mu$ оs $\theta a$ ava甲éperaı ws o mepí Euviaçıסотıкúv



 ठіачоретікர́ Évvoia－







 autí．
 ठuvá $\mu \varepsilon ı$ tou ttapóvtos Nó $\mu$ ou．
«ठáбкалоऽ» бпиaiveı－



 то Yттоирүіко́ $\Sigma u \mu ß о$ и́hıo каı

 бпиотіко́ охо入ві́o tins Kúmpou．















 ミuv日íkns yia in＾eıtoupyia ins Eupwmaïkńs＇Evwons í


 тарартŋ́иатоऽ VIII，Ap日ро 11，тоu kavoviouoú（EK kai EYPATOM） apı日． 11 каı 31／1962．
 бпй்бю чоцદ́a







 ठıєuӨuvtị，єтাӨと
 इuиßои́入ı：







 ivotitoútou．
«Kavovıopós（EK kaı EYPATOM）apı日． 11 кaı 31／1962» onuaiveı tqv

Emionu\# Eqnuepióa ms E.E.: 45, 14.6.1962, ©. 1385.

97(I) rou 1997
3(I) rou 1998 77(I) tou 1999 141 (I) tou 2001 69(1) Tou 2005 37(i) fou 2010 94(i) fou 2010 31(I) tou 2012 131(I) тou 2012.

73(I) rou 2004
94(1) Tou 2005
28(i) rou 2006
73(I) tou 2006
153(I) rou 2006
93(I) tou 2008
36(I) tou 2010
$169(1)$ rou 2011
52(1) you 2012
$115(1)$ you 2012.
$59(1)$ tou 2010
114(!) Tou 2010
126(1) Tou 2010
 Koivótịtas Atouikís Evépyeias $\mu \varepsilon$ rit入o «Kavoviouós apie. 31 (EOK)



 трототоוеітаı п̣ avtika日íotataı.






 $\Delta$ пиократіая, тои Гevıкoú кaı BoŋӨoú Гevikoú noyıotí ins

 vófo.








 пиعроипvía аutŋ்.

 vópo ท́ Kavoviouoús mou kaӨopiZouv tous kavóves utro^oyıo катаßодńs rwv ouvta



¿кото̧́ каи пебio вчариоүп் тои mapóvios Nórou.






Nовітаı о́т। о атокотв́s mou үivovraı סuváuel tou mapóvios

















 ouvrá $\varepsilon \varepsilon \omega \mathrm{v}$








 ó $\mu$ oiou $\mu \varepsilon$ autó:

 kavovio $\mu \dot{1}$. -

## $\mu^{\prime}$ वutés:




 тоиદ́a.



 amoגаßढ́v tou.

 єпютрєாг்єц.
 каvoviopüv, та $\omega \varphi \varepsilon \lambda$ п́nata aqu aӨроіттіка́, w̧ акодои́ $\theta \omega \varsigma$ :




 uтпребías rou каı


 (3):



(a) Ocov а甲орव́ uாव́ $\lambda \lambda \eta \lambda 0$ тои ह́रहा оинтіпрйоєя то є§пкобто́ три́то ( $61^{\circ}$ ) غ́тоऽ

 $\mu \eta v \dot{v}$, тpıv aדó Tŋv $t^{n}$ lavovapiou 2013,

 (14 1/2) каı ö́aןpoúhevou tou toooú trou трокütrei òrá трі́a (3).



 amó tпv $1^{7}$ lavouapiou 2013, eival íoo $\mu \varepsilon$ t $\eta v$

 mou mpoкúmtel ólá тpia (3) ka


 (436) ท́ тє lavouapiou 2013, eival too $\mu \varepsilon$ тпV eтŋ́aia




 октакобוобтои́ (1/800) тои $\mu \varepsilon ́ \sigma O U ~ o ́ \rho o u ~ t \omega V ~$

 пиعронףvia aqumпре́тпоп́s тои,






 (3):

 тобои́ тои ava甲є́peraı omiv ev $\lambda о ́ y \omega$
 $\mu \eta$ viaio тобо́ ń катаßо入ńs मı́pous autoú oє










 бтаӨعро́ $\mu \eta$ viaio тобо́.





 aөpoiotiкá，ws aко入oú $\theta \omega \varsigma$ ：




 atroגaßüv tou ouvóגou twv $\mu \eta v \omega ́ v ~ \sigma u v t a ́ \xi ן \eta s ~$

 ins eкáatote loxúouaas aopa入ıatikńs povádas tou
















Фородóyпof Eqd́maE Toooú ท்甲ілоб $\omega \rho$ 亿́ратоऽ mou кербіदетаі ик utipeofoc anó tinv $1^{\text {n }}$ lavouapiou 2013 kai $\mu \mathrm{ctá}$.

118（I）tou 2002 230（I）tou 2002 162（I）Tou 2003 195（I）тоU 2004 92（1）rou 2005 113（I）you 2006 80（1）Tou 2007 138（I）rou 2007 32（I）tou 2009 45（I）rou 2009 74（I）rou 2009 110（l）Tou 2009 $41(1)$ Tou 2010 133（I）you 2010 116 （I）you 2011 197（I）rou 2011




 трототтоєі́taı ŋ́ avtıkaӨíтатаı．

## Hдкіа utтохpewrkńs 

























 (63) £тúv:









 $\Delta \varepsilon к \varepsilon \mu \beta$ piou 2014, кaı Twv סúo $\eta \mu \varepsilon р о \mu \eta v i \omega ́ v ~ o u \mu \pi \varepsilon р ı \lambda a \mu ß a v o \mu \varepsilon ́ v \omega V, ~$ عívaı ๆ ๆ入ıkía twv є















 $\dot{\varepsilon} \xi_{1}(6) \mu \eta \vee \omega ́ v:$




 (61) ETüv.
(у) Ta $\mu \dot{\varepsilon} \lambda \eta$ ins Aotuvouias, ra omoía катá т $\eta \vee ~ \eta \mu \varepsilon \rho о \mu \eta ̨ \vee i ́ a$








 $\sum \varepsilon \pi т \mu \beta$ píou 2012 kai ths $31^{\text {ns }}$ Auyoúotou 2013, kal rwv סúo


 каӨпүךтп́ о оттоios оu

















 $\sum \varepsilon \pi T \mu \beta$ piou $2013 \mathrm{kaı}$ TMS $31^{\text {月S }}$ Auyoúctou 2014, kaı twv סúo
 $\varepsilon \tau \dot{\omega} v$ кaı $\dot{\xi} \xi(6) \mu \eta v \omega \dot{v}$ :





 ठабкádou, o oттоios ou








 2013:





 тотото́non tou таро́vtos Nópou, $\mu \varepsilon$ ßáon in $\mu \varepsilon т а \beta$ одń tou




ОІквюОСгли́ऽ тго́wp








 отоía еүкріvetaı amó to aphóס̇ı ópyavo, $\theta$ a
 tŋv $31^{\eta} \Delta \varepsilon к \varepsilon \mu \beta$ piou 2012, va fuyxávouv eqapuoyńs ol








 Mívakaç 2.

Avadoyiotikí $\mu \varepsilon i \omega \mathrm{OH}$ ouvrá $\varepsilon$ ع $\omega \mathrm{v}$.






 каӨоріदєтаı бто а́pӨ ро 9 тои таро́vtos Nó $\mu$ ои.
(2) Yта́ $\lambda \lambda \eta \lambda$ оs о отоíos $\mu \varepsilon$ ßáon rov окквío vó $\mu$ о ท́ кavoviouoús














Mn סıкаioúxos ą oúvia\}n xńpaş／xńpou．
¿uvtagıodonки́ ш甲едд́ната veogioepxoużv uTaAAウ̇ALV．

оu katá mooó mou avtiotolxei oe mooootó íoo $\mu \varepsilon$ autó tou ektiӨetai atous Пivakes 3 ह́ws 12，ava入óyws ins пגıкias uttoxpewtikńs
 Nó $\mu$ ou．











 тєрі́ттішのף Өavátou tou：


 Хńpo»．

 इuvtá\＆ॄ
 vó $\mu$ ou ท́ kavoviбuüv．






Huॄpounvía
Évapsns ins ioxũos tou таро́vtos Nopou．

ПINAKAE 1
\｛Ap日po 7（1）\}
METATPOПH EФAПA三 ПOГOY इE इYNTAシH

| HAikíd | 17póooठos |
| :---: | :---: |
| 45 | 27.43 |
| 46 | 26.98 |
| 47 | 26.52 |
| 48 | 26.06 |
| 49 | 25.59 |
| 50 | 25.12 |
| 51 | 24.64 |
| 52 | 24.15 |
| 53 | 23.66 |
| 54 | 23.16 |
| 55 | 22.66 |
| 56 | 22，15 |
| 57 | 21.64 |
| 58 | 21.13 |
| 59 | 20.61 |
| 60 | 20.09 |
| 61 | 19.57 |
| 62 | 19.04 |
| 63 | 18.50 |
| 64 | 17.97 |
| 65 | 17.43 |

CIINAKAE 2
（Ap日po 10）
OIKEIOӨEAH5 ПPORPH AФYПIHPETHEH META THN $1^{H}$ IANOYAPIOY 2013

| A／A | KATHIOPIA YППA＾＾H＾OY | HAIKIA KATABOAHE ЕФАПА三 ПОГОҮ | HAIKIA ENAPシH亡 KATABO $\wedge H \Sigma T H \Sigma$ इYNTAZH $\Sigma$ |
| :---: | :---: | :---: | :---: |
| 1 |  <br>  oapávia mévte（45）हtúv tolv amó тп $1^{17}$ lavouapiou 2013 kar <br>  тро́wpn a甲umpémon（via та <br>  uтпрео́áa aпо́ тпи $1^{17}$ lavouapiou <br>  otrolos utroßádдeı aitnon yla <br>  <br>  oapávta mévte（45）éüv： <br> （a）Metagú tnS $1^{\text {ns }}$ Iavouapiou 2013 kaimis $31^{\text {ns }}$ $\Delta \varepsilon к \varepsilon \mu \beta$ piou <br>  <br>  <br> （ $\beta$ ）$\mu \varepsilon$ cragú $\ddagger n \varsigma 1^{\text {ns }}$ Iavouapiou 2014 kal $\mathrm{ms} 31^{\text {ns }} \Delta \varepsilon \kappa \varepsilon \mu ß$ piou <br>  <br>  <br> （y）нeta̧ú ins $1^{\text {ns }}$ Iavouapiou 2015 kal ins $31^{\text {ns }} \Delta \varepsilon к \varepsilon \mu \beta$ piou 2015，каı <br>  <br>  <br> （ס）Leta§ú ths $1^{\text {ns }}$ Iavouapiou 2016 каı TПร $31^{175} \Delta \varepsilon к \varepsilon \mu ß$ piou 2016，каı twv סúo пиعроипvíiv <br>  <br> （ع）$\mu$ हтаदu mas $1^{\text {ns }}$ lavovapiou 2017 kal ms $31^{\text {ns }} \Delta \varepsilon \kappa \varepsilon \mu \beta$ piou 2017，ka <br>  वи $\mu \pi \varepsilon \rho \mid \lambda a \mu \beta a v o \mu \varepsilon ̇ v \omega v$ ． <br> （бт）$\mu \varepsilon$ каद́vi ms $1^{\text {ns }}$ lavouapiou 2018 kal ms $31^{\text {ns }} \triangle$ Ex $\varepsilon \equiv \beta$ piou <br>  <br>  <br>  kal mऽ $31^{\text {ns }} \triangle \varepsilon к \varepsilon \mu$ Bpiou 2019，kal <br>  <br>  |  п入ikias t $\omega$ v oapávia <br>  uクvúv． <br> $\mu \varepsilon$ пп वuf пौккia̧ twV oapávia $\varepsilon$ ह́ （46）ETúv． <br>  Пגıías twV oapávta é <br>  $\mu \eta v i ́ v$ ． <br> $\mu \varepsilon$ in оu $\quad \pi \lambda \dot{1} \rho \omega \sigma \eta$ ins <br>  （47）Etuj． <br>  Плıкias twv oapávia emtá （47）£тúv кaı غ̧́）（6） unvív． <br>  плıkias twv oapávia oktú （48）ETúv． <br>  плıкlaş teuv oapávta oкті́ （48）$\varepsilon$ тúv каı $\varepsilon \xi \xi$ ，（6） $\mu \eta v i v$ ． |  пдікías Tんv пevŋ̧via mévie <br>  <br>  <br>  （56）ETuv． <br> $\mu \varepsilon$ m оupti $\lambda \dot{\rho} \rho \omega \sigma \eta$ ms Пスıкias TWV tevívta é <br>  <br>  ПAıkias twv tevívia $\varepsilon$ mtá （57）عாய்้． <br>  <br>  <br>  <br>  <br>  （58）દтúv． <br>  <br>  <br>  |


| A／A | КАТНГОРIA YПA＾＾H＾OY | H＾IKIA KATABO＾H亡 ЕФАПАЕ ПOгOY | HAIKIA ENAP $=H \Sigma$ KATABO $\wedge H \Sigma$ THE इYNTA三H $\Sigma$ |
| :---: | :---: | :---: | :---: |
|  | （ 7 ）Heta̧ú Tins $1^{\text {ns }}$ favouapiou 2020 kal Tлऽ $33^{115} \Delta \varepsilon к \varepsilon \mu$ Bpiou 2020，кая <br>  <br>  <br> （ $\theta$ ）山eta§u tits $1^{\text {ns }}$ lavouapiou 2021 kal ms $31^{\text {ns }} \Delta \varepsilon к \varepsilon \mu$ Bpiou 2021，каң <br>  <br>  <br>  2022. |  ndixias tuv oapávia evvéa（49）ETƯV． <br>  плккias tuv oapávia evvéa（49）etw̄ kaı દ́乡！（6） $\mu \eta v \omega$ v． <br> $\mu \varepsilon$ in वчит <br>  etúv． | $\mu \varepsilon$ m oupmińpwon $T \hbar$ <br>  （59）crü． <br>  <br>  <br>  <br>  <br>  Etüv． |
| 2. |  <br>  oapávid oктú（48）हtúv triv atró m $\eta$ V 1 lavouapiou $2013 \mathrm{kaı}$ <br>  <br>  <br>  uтпрребia amo tiv $1^{n}$ iavouapiou <br>  <br>  <br>  <br>  oapávia oкти́（48）Eтüv： <br> （a）Meta̧ú m̧ $1^{\text {nh }}$ lavouaplou 2013 kaltins $31^{\text {ns }}$ Sekepißpiou 2013 <br>  <br>  <br>  <br>  <br>  <br>  <br> （y）山etaçú ths $1^{\text {ns }}$ favovapiou 2015 <br>  <br>  <br>  <br>  2016. |  <br>  （48）हтய̈v каı $\varepsilon$ ह́（6） uףvév． <br>  ¡Aıkias twv oapávia <br>  <br>  ๆגıкías twv oapávia <br>  unviv－ <br>  <br>  हтїv． |  <br>  <br>  <br>  <br>  （59）हucjv． <br> $\mu \varepsilon$ m ountinńpwon ms <br>  <br>  <br> $\mu \varepsilon$ TП $\sigma u \mu \pi \lambda n ́ p \omega \sigma \eta$ TIS <br>  ETüv． |
| 3. | Mह̇入os tis Aqtuvouias，$\mu \varepsilon$ to <br>  <br>  т wV वapávta tévte（45）हTwiv mpiv aтtó tпү $1^{n}$ Iavouapiou 2013 kaı <br>  <br>  wpe <br>  lavouapiou 2013 кая $\mu$ ктáa），í <br>  <br>  <br>  |  |  |


| A／A | КАТНГОРІА ҮПА＾＾H＾OY | HAIKIA KATABOAHE ЕФАПАЕ ПОГОY | H $\triangle$ IKIA ENA $\bar{P} \equiv H \Sigma$ KATABO $\wedge H \Sigma T H \Sigma$ इYNTA三HE |
| :---: | :---: | :---: | :---: |
|  | oapávta חÉvte（45）घ！ <br> （a）Meta§ú ins $1^{\text {ns }}$ lavouapiou 2013 kal ths $31^{\text {ns }} \Delta \varepsilon к \varepsilon \mu ß$ piou 2013 <br>  <br>  <br> （ $\beta$ ）uctaju ths $1^{\text {ns }}$ lavouapiou 2014 kai ins $31^{\text {ns }} \Delta \varepsilon к \varepsilon \mu ß$ piou 2014 ка। <br>  <br>  <br> （Y）$\mu \varepsilon$ ta̧̧ú ins $1^{\text {nS }}$ lavouaplou 2015 kal ins $31^{1 \text { ns }} \Delta \varepsilon к \varepsilon \mu \beta$ piou 2015，каı <br>  <br>  <br>  <br>  <br>  <br>  <br>  kal ths $31^{\text {ns }} \Delta \varepsilon к \varepsilon \mu ß$ piou 2017，кая <br>  бupाepiRaußavouévuv． <br> （бт）$\mu$ हтa̧̧ú Tņ $1^{\text {ns }}$ Iavouapiou 2018 kai rns $31^{\text {hs }} \Delta \varepsilon к \varepsilon \mu$ ßpiou <br>  оч $\quad$ тєр $1 \lambda \alpha \mu \beta a v o \mu \varepsilon ́ v \omega V$ ． <br> （弓）$\mu \varepsilon т а \xi 0$ ins $1^{\text {ns }}$ Iavouapíou 2019 каi TIS $31^{\text {ns }} \Delta \varepsilon к \varepsilon \mu \beta$ piou 2019，кая <br>  <br>  <br> （n）$\mu \varepsilon$ ça̧u ins $1^{\text {ns }}$ lavouapiou 2020 kai ms $31^{\text {ns }} \Delta \varepsilon к \varepsilon \mu \beta$ piou 2020，kaı <br>  бuptepiגaцßavouĖvuv． <br> （ $\theta$ ）$\mu \varepsilon$ ra̧ú TnS $1^{\text {ns }}$ lavouapiou 2021 <br>  <br>  <br>  <br>  2022. | $\mu \mathrm{I}$ in वupminjpwon ins ndikias tuv gapávia <br>  Hクvúv． <br> не in ouptińpovon ins १\ikias TwV oapávia $\varepsilon$ ह́ （46）ETじv． <br>  $\eta \lambda ı$ кias twvo oapávia é $\xi$ <br>  unviv． <br> $\mu \varepsilon$ пп वицит Пגкías twv oapávia हाTó（47）हтúv． <br> $\mu \varepsilon$ in ouptinjouan ms <br>  （47）ETúv кal દ̇彑ı（6） unvív． <br> $\mu \varepsilon$ in oupmińpwan ths п丸ıías tuv oapávta okté （48）ETúv． <br>  ¡えıkias twv oapávta oкт́u （48）ETúv kaı é $\mu \eta v i v$ ． <br>  ndikias twv oapávia EVVÉa（49）عाúv． <br> $\mu \varepsilon$ тп оupitiñowan TŋS ఇ＾ıkias two oapávia <br>  uñvív． <br>  П入ıкias twV Ttevívta（50） Erüv． |  <br>  <br>  <br>  пдкіац̧ twv tevĭvta é （56）हाüv． <br>  <br>  （56）ETüv kaı $\varepsilon \xi_{1}(6)$ jhvüv． <br>  <br>  （57）ETẅV． <br> $\mu \varepsilon$ TП оuptiñpowon ins <br>  <br>  <br> $\mu \varepsilon$ т $\quad$ оuptintipmon tis <br>  （58）ctäv． <br>  <br>  <br>  <br>  Пגлкías twv tevịivia evvéa （59）દाüv． <br>  Пגikias twv דevívta evvea <br>  <br>  nAıkias twv énivta（60） ETưv． |
| 4. | MEגos tins Aatuvouías，$\mu \varepsilon$ ваөнó avütepo tou＾oxía，to опоio éxel <br>  oapávta tévive（45）हiúv tpiv amó inv $1^{17}$ Iavouapiou 2013 kal <br>  <br>  <br>  |  |  |



TINAKE 3 źws 12
(Apөpo 11)
ANAへOFI乏TTKH MEI $\Omega \Sigma H \Sigma Y N T A E E \Omega N$
ПINAKAE 3

|  |  |  |
| :---: | :---: | :---: |
| НАıкі́а | £úvra̧n | E¢áras |
| 45,5 | - | 26,60\% |
| 46,5 | - | 25,30\% |
| 47,5 | - | 24,10\% |
| 48,5 | - | 22,80\% |
| 49,5 | - | 21,40\% |
| 50,5 | - | 20,00\% |
| 51,5 | - | 18,50\% |
| 52,5 | - | 17,00\% |
| 53,5 | - | 15,30\% |
| 54,5 | - | 13,50\% |
| 55,5 | 22,30\% | 11,70\% |
| 56,5 | 18,60\% | 9,60\% |
| 57,5 | 14,50\% | 7,50\% |
| 58,5 | 10,10\% | 5,10\% |
| 59,5 | 5,30\% | 2,70\% |
| 60,5 | 0,00\% | 0,00\% |

MINAKAE 4


| HAikía | Eúvracn | E¢ átras |
| :---: | :---: | :---: |
| 46 | - | 27,00\% |
| 47 | - | 25,80\% |
| 48 | - | 24,50\% |
| 49 | - | 23,20\% |
| 50 | - | 21,80\% |
| 51 | - | 20,40\% |
| 52 | - | 18,90\% |
| 53 | - | 17,30\% |
| 54 | - | 15,60\% |
| 55 | - | 13,80\% |
| 56 | 22,70\% | 11,90\% |
| 57 | 18,90\% | 9,80\% |
| 58 | 14,70\% | 7,60\% |
| 59 | 10,20\% | 5,20\% |
| 60 | 5,30\% | 2,70\% |
| 61 | 0,00\% | 0,00\% |

CIINAKAE 5

|  |  |  |
| :---: | :---: | :---: |
| Hגıкіа | ミúvta¢n | Ечáma̧ |
| 46,5 | - | 27,40\% |
| 47,5 | - | 26,20\% |
| 48,5 | - | 24,90\% |
| 49,5 | - | 23,60\% |
| 50,5 | - | 22,20\% |
| 51,5 | - | 20,80\% |
| 52,5 | - | 19,20\% |
| 53,5 | - | 17,60\% |
| 54,5 | - | 15,90\% |
| 55,5 | - | 14,10\% |
| 56,5 | 23,00\% | 12,10\% |
| 57,5 | 19,20\% | 10,00\% |
| 58,5 | 15,00\% | 7,80\% |
| 59,5 | 10,40\% | 5,30\% |
| 60,5 | 5,40\% | 2,80\% |
| 61,5 | 0,00\% | 0,00\% |

TIINAKAE 6

|  |  |  |
| :---: | :---: | :---: |
| Нлıкіа | ¿úvta¢n | E¢áma̧ |
| 47 | - | 27,90\% |
| 48 | - | 26,60\% |
| 49 | - | 25,30\% |
| 50 | - | 24,00\% |
| 51 | - | 22,60\% |
| 52 | - | 21,20\% |
| 53 | - | 19,60\% |
| 54 | - | 18,00\% |
| 55 | - | 16,20\% |
| 56 | - | 14,40\% |
| 57 | 23,40\% | 12,40\% |
| 58 | 19,40\% | 10,20\% |
| 59 | 15,20\% | 7,90\% |
| 60 | 10,60\% | 5,50\% |
| 61 | 5,50\% | 2,80\% |
| 62 | 0,00\% | 0,00\% |

ПINAKAㄷ 7

|  |  |  |
| :---: | :---: | :---: |
| Hлıкía | ¿úvta̧n | E¢áma\} |
| 47,5 | - | 28,30\% |
| 48,5 | - | 27,10\% |
| 49,5 | - | 25,80\% |
| 50,5 | - | 24,50\% |
| 51,5 | - | 23,10\% |
| 52,5 | - | 21,60\% |
| 53,5 | - | 20,00\% |
| 54,5 | - | 18,40\% |
| 55,5 | - | 16,60\% |
| 56,5 | - | 14,70\% |
| 57,5 | 23,70\% | 12,60\% |
| 58,5 | 19,70\% | 10,40\% |
| 59,5 | 15,40\% | 8,10\% |
| 60,5 | 10,70\% | 5,60\% |
| 61,5 | 5,60\% | 2,90\% |
| 62,5 | 0,00\% | 0,00\% |

ПINAKAE 8

| HAıкí Y Ytoxpewtiknis A¢umn¢étnons: $63{ }^{\circ}$ |  |  |
| :---: | :---: | :---: |
| Ндıкіа | £üvia¢! | E¢áma̧ |
| 48 | - | 28,80\% |
| 49 | - | 27,60\% |
| 50 | - | 26,30\% |
| 51 | - | 24,90\% |
| 52 | - | 23,50\% |
| 53 | - | 22,00\% |
| 54 | - | 20,40\% |
| 55 | - | 18,70\% |
| 56 | - | 16,90\% |
| 57 | - | 15,00\% |
| 58 | 24,00\% | 12,90\% |
| 59 | 20,00\% | 10,60\% |
| 60 | 15,70\% | 8,20\% |
| 61 | 10,90\% | 5,70\% |
| 62 | 5,70\% | 3,00\% |
| 63 | 0,00\% | 0,00\% |

ПINAKAE 9

|  |  |  |
| :---: | :---: | :---: |
| НАıкі́a | 「úvTa¢n | Eqáma̧ |
| 48,5 | - | 29,30\% |
| 49,5 | - | 28,00\% |
| 50,5 | - | 26,70\% |
| 51,5 | - | 25,40\% |
| 52,5 | - | 24,00\% |
| 53,5 | - | 22,40\% |
| 54,5 | - | 20,80\% |
| 55,5 | - | 19,10\% |
| 56,5 | - | 17,20\% |
| 57,5 | - | 15,30\% |
| 58,5 | 24,40\% | 13,10\% |
| 59,5 | 20,40\% | 10,90\% |
| 60,5 | 15,90\% | 8,40\% |
| 61,5 | 11,10\% | 5,80\% |
| 62,5 | 5,80\% | 3,00\% |
| 63,5 | 0,00\% | 0,00\% |

IIINAKAE 10

|  |  |  |
| :---: | :---: | :---: |
| Нлıкіа | £úvta̧n | Eqárras |
| 49 | - | 29,80\% |
| 50 | - | 28,50\% |
| 51 | - | 27,20\% |
| 52 | - | 25,90\% |
| 53 | - | 24,40\% |
| 54 | - | 22,90\% |
| 55 | - | 21,20\% |
| 56 | - | 19,50\% |
| 57 | - | 17,60\% |
| 58 | - | 15,60\% |
| 59 | 24,80\% | 13,40\% |
| 60 | 20,70\% | 11,10\% |
| 61 | 16,20\% | 8,60\% |
| 62 | 11,30\% | 6,00\% |
| 63 | 5,90\% | 3,10\% |
| 64 | 0,00\% | 0,00\% |

TINAKAE 11

|  |  |  |
| :---: | :---: | :---: |
| Hдıкіа | 「úvta¢n | E¢átra̧ |
| 49,5 | - | 30,30\% |
| 50,5 | - | 29,10\% |
| 51,5 | - | 27,70\% |
| 52,5 | - | 26,40\% |
| 53,5 | - | 24,90\% |
| 54,5 | - | 23,30\% |
| 55,5 | - | 21,70\% |
| 56,5 | - | 19,90\% |
| 57,5 | - | 17,90\% |
| 58,5 | - | 15,90\% |
| 59,5 | 25,20\% | 13,70\% |
| 60,5 | 21,00\% | 11,30\% |
| 61,5 | 16,50\% | 8,80\% |
| 62,5 | 11,50\% | 6,10\% |
| 63,5 | 6,00\% | 3,20\% |
| 64,5 | 0,00\% | 0,00\% |

TIINAKAE 12

|  |  |  |
| :---: | :---: | :---: |
| Ндккіа | ¿üvra¢̧ | Eчáта¢ |
| 50 | - | 30,90\% |
| 51 | - | 29,60\% |
| 52 | - | 28,30\% |
| 53 | - | 26,90\% |
| 54 | - | 25,40\% |
| 55 | - | 23,80\% |
| 56 | - | 22,10\% |
| 57 | - | 20,30\% |
| 58 | - | 18,30\% |
| 59 | - | 16,20\% |
| 60 | 25,50\% | 14,00\% |
| 61 | 21,30\% | 11,60\% |
| 62 | 16,70\% | 9,00\% |
| 63 | 11,70\% | 6,20\% |
| 64 | 6,10\% | 3,20\% |
| 65 | 0,00\% | 0,00\% |

